'contrast' Searchterm 'contrast' found in 18 terms [ • ] and 94 definitions [• ]Result Pages : •
Contrast is the relative difference of intensities in two adjacent regions of an image. When referring to computed tomography (CT), contrast is defined as a difference in Hounsfield units between structures. The measurement of contrast resolution in CT imaging involves determining how easy it is to differentiate tissues whose CT density is similar to that of their surroundings. An image lacks contrast when there are no sharp differences between black and white. Brightness refers to the overall lightness or darkness of an image. The contrast between air, soft tissue, and bones in x-ray and CT images is based on their different absorption of x-rays. Differences in tissue density, thickness and changes of the x-ray spectrum have consequences for image contrast, image noise as well as patient dose. Optimized tube current, collimation, pitch and image reconstruction improves the contrast. Higher image contrast is produced by increased slice thickness, smaller matrix, and large field of view which results in large voxel size; high mAs to reduce noise; low pass filter. See also Contrast Enhanced Computed Tomography. Further Reading: Basics:
News & More:
•
See Dye, Contrast Agents.
• • (CA) Contrast agents are used to change the imaging characteristics, resulting in additional information about anatomy, morphology or physiology of the human body. Radiocontrast agents (also called photon-based imaging agents) are used to improve the visibility of internal body structures in x-ray and CT procedures. Contrast agents are also used to increase the contrast between different tissues in MRI (magnetic resonance imaging) and ultrasound imaging. The ideal imaging agent provides enhanced contrast with little biological interaction. First investigations with radiopaque materials are done shortly after the discovery of x-rays. These positive contrast agents attenuate x-rays more than body soft tissues due to their high atomic weight. Iodine and barium have been identified as suitable materials with high radiodensity and are used until today in x-ray and CT contrast agents. Iodine-based contrast agents are water-soluble and the solutions are used nearly anywhere in the body. Iodinated contrast materials are most administered intravenous, but can also be introduced intraarterial, intrathecal, oral, rectal, intravesical, or installed in body cavities. Barium sulfate is only used for opacification of the gastrointestinal tract. Negative contrast agents attenuate x-rays less than body soft tissues, for example gas. Iodinated contrast media are differentiated in;
•
•
ionic monomer (high-osmolar contrast media);
•
nonionic dimer (low- or iso-osmolar contrast media);
Intravascular iodinated contrast agents are required for a large number of x-ray and CT studies to enhance vessels and organs dependent on the blood supply. Injectable contrast agents are diluted in the bloodstream and rapidly distributed throughout the extracellular fluid. The main route of excretion is through the kidneys, related to the poor binding of the agent to serum albumin. The liver (gall bladder) and small intestine provide alternate routes of elimination particularly in patients with severe renal impairment. The use of special biliary contrast agents is suitable for gallbladder CT and cholecystograms because they are concentrated by the liver to be detectable in the hepatic bile. The introduction of fast multi-detector row CT technology, has led to the development of optimized contrast injection techniques. The amount of contrast enhancement depends on the contrast agent characteristics, such as iodine concentration, osmolality, viscosity, and the injection protocol, such as iodine flux and iodine dose. Adverse reactions are rare and have decreased with the introduction of nonionic contrast agents. See also Contrast Enhanced Computed Tomography, Abdomen CT, Contrast Media Injector, Single-Head CT Power Injector, Multi-Head Contrast Media Injector, Syringeless CT Power Injector, CT Power Injector. Further Reading: News & More:
•
A double contrast exam uses both a radiopaque and a radiolucent contrast agent. Double contrast is for example used in gastrointestinal examinations to show the pattern of mucosal ridges. The walls of the intestine are coated with the radiopaque barium and the lumen is filled with radiolucent air.
Result Pages : |