Radiology - Technology Information Portal
Friday, 4 April 2025
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'View' p5
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'View' found in 9 terms [
] and 31 definitions [
]
Result Pages :
...
...
Compton Effect
The Compton effect describes the interaction of x-ray photons with electrons, in Compton's experiment in 1922/23 the electrons of graphite atoms. The x-ray photons scatter (Compton scattering) off the electrons in different directions. The remaining energy (lower frequency) of the scattered x-ray photons depends on the scattering angle. From an energy based point of view, these 'new or old' photons are a part of the original energy, represented by the incident x-ray photon before the interaction. The photons loss of energy (reduced frequency) is gained by an electron. Depending on this energy the electron could leave the atom. Depending on the remaining energy of the photon the interaction can repeat with a more to more decreasing energy level in the form of further Compton Scattering or by photo-electric absorption. Usually the Compton effect involves atom-bound electrons.
The Compton effect is responsible for most scattering effects in radiography.
Contrast
Contrast is the relative difference of intensities in two adjacent regions of an image. When referring to computed tomography (CT), contrast is defined as a difference in Hounsfield units between structures. The measurement of contrast resolution in CT imaging involves determining how easy it is to differentiate tissues whose CT density is similar to that of their surroundings. An image lacks contrast when there are no sharp differences between black and white. Brightness refers to the overall lightness or darkness of an image.
The contrast between air, soft tissue, and bones in x-ray and CT images is based on their different absorption of x-rays. Differences in tissue density, thickness and changes of the x-ray spectrum have consequences for image contrast, image noise as well as patient dose.
Optimized tube current, collimation, pitch and image reconstruction improves the contrast. Higher image contrast is produced by increased slice thickness, smaller matrix, and large field of view which results in large voxel size; high mAs to reduce noise; low pass filter.

See also Contrast Enhanced Computed Tomography.
Coronary Angiogram
A coronary angiogram (or cardiac catheterization) is the radiographic visualization of the coronary arteries after the introduction of a contrast agent. A coronary angiography can be performed for both diagnostic and interventional (treatment) purposes.
A catheter, inserted into a major blood vessel has to be maneuvered up to the coronary arteries to inject a blood compatible iodinated contrast material (dye). The x-ray visible catheter allows injecting a small amount of contrast agent selectively in the coronary arteries or the heart chambers. Continuous images are recorded (movies or cineangiogram) in multiple views from different angles are in order to ascertain the precise location and severity of coronary artery blockages. Digitized images are also saved on computer and replayed onto a video screen as needed.
A coronary angiogram is more invasive and requires more patient recovery time than coronary CT angiography. In the past, the gold standard for detecting atherosclerotic plaque was a coronary angiography and intravascular ultrasound. Today, the American Heart Association considers CT scanning to be one of the most effective, non-invasive methods for the detection of calcification in the coronary arteries.

See also Interventional Radiology.
Detail Detectability
The highest amount of detail that can be shown in an image. Defined by the size of the smallest object that can be conveniently viewed, which for nanofocus and microfocus x-ray tubes is about half the size of the focal spot.
Diagnostic Imaging
Imaging refers to the visual representation of an object. Today, diagnostic imaging uses radiology and other techniques, mostly noninvasive, to create pictures of the human body. Diagnostic radiography studies the anatomy and physiology to diagnose an array of medical conditions. The history of medical diagnostic imaging is in many ways the history of radiology. Many imaging techniques also have scientific and industrial applications. Diagnostic imaging in its widest sense is part of biological science and may include medical photography, microscopy and techniques which are not primarily designed to produce images (e.g., electroencephalography and magnetoencephalography).
Brief overview about important developments:
Imaging used for medical purposes, began after the discovery of x-rays by Konrad Roentgen 1896. The first fifty years of radiological imaging, pictures have been created by focusing x-rays on the examined body part and direct depiction onto a single piece of film inside a special cassette.
In the 1950s, first nuclear medicine studies showed the up-take of very low-level radioactive chemicals in organs, using special gamma cameras. This diagnostic imaging technology allows information of biologic processes in vivo. Today, single photon emission computed tomography (SPECT) and positron emission tomography (PET) play an important role in both clinical research and diagnosis of biochemical and physiologic processes.
In the 1960s, the principals of sonar were applied to diagnostic imaging. Ultrasound has been imported into practically every area of medicine as an important diagnostic tool, and there are great opportunities for its further development. Looking into the future, the grand challenges include targeted contrast imaging, real-time 3D or 4D ultrasound, and molecular imaging. The earliest use of ultrasound contrast agents (USCA) was in 1968.
The introduction of computed tomography (CT/CAT) in the 1970s revolutionized medical imaging with cross sectional images of the human body and high contrast between different types of soft tissues. These developments were made possible by analog to digital converters and computers. First, spiral CT (also called helical), then multislice CT (or multi-detector row CT) technology expanded the clinical applications dramatically.
The first magnetic resonance imaging (MRI) devices were tested on clinical patients in 1980. With technological improvements including higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI is a real-time interactive imaging modality that provides both detailed structural and functional information of the body.

Today, imaging in medicine has been developed to a stage that was inconceivable a century ago, with growing modalities:
x-ray projection imaging, including conventional radiography and digital radiography;
scintigraphy;
single photon emission computed tomography;
positron emission tomography.

All these types of scans are an integral part of modern healthcare. Usually, a radiologist interprets the images. Most clinical studies are acquired by a radiographer or radiologic technologist. In filmless, digital radiology departments all images are acquired and stored on computers. Because of the rapid development of digital imaging modalities, the increasing need for an efficient management leads to the widening of radiology information systems (RIS) and archival of images in digital form in a picture archiving and communication system (PACS). In telemedicine, medical images of MRI scans, x-ray examinations, CT scans and ultrasound pictures are transmitted in real time.

See also Interventional Radiology, Image Quality and CT Scanner.
Result Pages :
...
...
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2025 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]