'Slice' p3 Searchterm 'Slice' found in 1 term [ • ] and 23 definitions [• ]Result Pages : •
(CTDI) The computed tomography dose index is most commonly used dose descriptor, which represents the dose to a location (e.g., depth) in a scanned volume. This index describes the dose from a single rotation of a CT scanner. CTDI must be corrected for pitch or couch increment to receive the dose for a series of slices. The CTDI100 is measured using a 100 mm long ionization chamber. The CTDIair is the value of CTDI determined free-in-air. Different definitions of CTDI exist and are used in different applications. Further Reading: Basics:
•
Contrast is the relative difference of intensities in two adjacent regions of an image. When referring to computed tomography (CT), contrast is defined as a difference in Hounsfield units between structures. The measurement of contrast resolution in CT imaging involves determining how easy it is to differentiate tissues whose CT density is similar to that of their surroundings. An image lacks contrast when there are no sharp differences between black and white. Brightness refers to the overall lightness or darkness of an image. The contrast between air, soft tissue, and bones in x-ray and CT images is based on their different absorption of x-rays. Differences in tissue density, thickness and changes of the x-ray spectrum have consequences for image contrast, image noise as well as patient dose. Optimized tube current, collimation, pitch and image reconstruction improves the contrast. Higher image contrast is produced by increased slice thickness, smaller matrix, and large field of view which results in large voxel size; high mAs to reduce noise; low pass filter. See also Contrast Enhanced Computed Tomography. Further Reading: Basics:
News & More:
•
The couch increment is the distance by which the position of a patient table is changed between individual slices. In spiral CT scanning the couch increment is the change of the table position during one 360° rotation of the x-ray tube.
•
Imaging refers to the visual representation of an object. Today, diagnostic imaging uses radiology and other techniques, mostly noninvasive, to create pictures of the human body. Diagnostic radiography studies the anatomy and physiology to diagnose an array of medical conditions. The history of medical diagnostic imaging is in many ways the history of radiology. Many imaging techniques also have scientific and industrial applications. Diagnostic imaging in its widest sense is part of biological science and may include medical photography, microscopy and techniques which are not primarily designed to produce images (e.g., electroencephalography and magnetoencephalography). Brief overview about important developments: Imaging used for medical purposes, began after the discovery of x-rays by Konrad Roentgen 1896. The first fifty years of radiological imaging, pictures have been created by focusing x-rays on the examined body part and direct depiction onto a single piece of film inside a special cassette. In the 1950s, first nuclear medicine studies showed the up-take of very low-level radioactive chemicals in organs, using special gamma cameras. This diagnostic imaging technology allows information of biologic processes in vivo. Today, single photon emission computed tomography (SPECT) and positron emission tomography (PET) play an important role in both clinical research and diagnosis of biochemical and physiologic processes. In the 1960s, the principals of sonar were applied to diagnostic imaging. Ultrasound has been imported into practically every area of medicine as an important diagnostic tool, and there are great opportunities for its further development. Looking into the future, the grand challenges include targeted contrast imaging, real-time 3D or 4D ultrasound, and molecular imaging. The earliest use of ultrasound contrast agents (USCA) was in 1968. The introduction of computed tomography (CT/CAT) in the 1970s revolutionized medical imaging with cross sectional images of the human body and high contrast between different types of soft tissues. These developments were made possible by analog to digital converters and computers. First, spiral CT (also called helical), then multislice CT (or multi-detector row CT) technology expanded the clinical applications dramatically. The first magnetic resonance imaging (MRI) devices were tested on clinical patients in 1980. With technological improvements including higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI is a real-time interactive imaging modality that provides both detailed structural and functional information of the body. Today, imaging in medicine has been developed to a stage that was inconceivable a century ago, with growing modalities: x-ray projection imaging, including conventional radiography and digital radiography;
•
•
•
•
magnetic resonance imaging;
•
scintigraphy;
•
single photon emission computed tomography;
•
positron emission tomography.
All these types of scans are an integral part of modern healthcare. Usually, a radiologist interprets the images. Most clinical studies are acquired by a radiographer or radiologic technologist. In filmless, digital radiology departments all images are acquired and stored on computers. Because of the rapid development of digital imaging modalities, the increasing need for an efficient management leads to the widening of radiology information systems (RIS) and archival of images in digital form in a picture archiving and communication system (PACS). In telemedicine, medical images of MRI scans, x-ray examinations, CT scans and ultrasound pictures are transmitted in real time. See also Interventional Radiology, Image Quality and CT Scanner. Further Reading: Basics:
News & More:
•
(MIP) CT Angiography images can be processed by maximum intensity projection to interactively viewing volumes of data, where the CT number of each pixel is given by the minimum CT number through the volume. The MIP connects the high intensity dots of the blood vessels in three dimensions, providing an angiogram that can be viewed from any projection. Each point in the MIP represents the highest intensity experienced in that location on any partition within the imaging volume. For complete interpretation the base slices should also be reviewed individually and with multiplanar reconstruction (MPR) software. The MIP can then be displayed in a Cine format or filmed as multiple images acquired from different projections.
Result Pages : |