'Radiographic Noise' Searchterm 'Radiographic Noise' found in 1 term [ • ] and 1 definition [• ], (+ 2 Boolean[• ] resultsResult Pages : • Radiographic Noise
Radiographic noise is a fluctuation in optical density on radiographic or mammographic images, often as a result of low radiation dose. See also Electronic Noise. •
Tomography is imaging by sections or sectioning to obtain images of slices through objects like the human body. Tomography is derived from the Greek words 'to cut or section' (tomos) and 'to write' (graphein). A device used in tomography is called a tomograph, while the image produced is a tomogram. The first medical applications utilized x-rays for images of tissues based on their x-ray attenuation coefficient. The mathematical basis for tomographic imaging was laid down by Johann Radon. This type of imaging is used in different medical applications as for example computed tomography, ultrasound imaging, positron emission tomography and magnetic resonance imaging (MRI) also called magnetic resonance tomography (MRT). Conventional x-ray tomographic techniques show organ structures lying in a predetermined plane (the focal plane), while blurring the tissue structures in planes above and below by linear or complex geometrical motion of the x-ray tube and film cassette. Basically, computed tomography is the reconstruction of an image from its projections. In the strict sense of the word, a projection at a given angle is the integral of the image in the direction specified by that angle. The CT images (slices) are created in the axial plane, while coronal and sagittal images can be rendered by computer reconstruction. See also Zonography, Computed or Computerized Axial Tomography, Resolution Element, Radiographic Noise, Intravenous Pyelogram. Further Reading: Basics:
News & More:
•
Filter grids are used to reduce scattered noise and increase contrast in x-ray images. Primary radiation passing through an object gets scattered caused by the various density of different materials. Scatter radiation produces noise (radiographic fog) on the film or detector, which degrades the diagnostic quality. Anti-scatter grids act as filters between patient and film (or receiver) to remove scatter radiation. The use of a grid is recommended with body parts thicker than 10 cm and kVp values about 60 kV. X-ray filter grids are available with focused or parallel strips. These two types are produced with linear or crossed grid configurations. The septa of filter grids consist of high radiation absorbing materials (e.g. lead) separated by permeable parts. During radiation exposure, movement of the grid blurs a projection of the septa. If the image receptor and x-ray tube (with the focal spot) are in a fixed position relative to one another the grid is automatically aligned. In mobile radiography, the position of the focal spot and the image receptor is variable. Additionally cassettes incorporating anti-scatter grids are also available. •
Image quality is an important value of all radiographic imaging procedures. Accurate measures of both image quality and patient radiation risk are needed for effective optimization of diagnostic imaging. Images are acquired for specific purposes, and the result depends on how well this task is performed. The imaging performance is mainly influenced by the imaging procedure, examined object, contrast agents, imaging system, electronic data processing, display, maintenance and the operator. Spatial resolution (sharpness), contrast resolution and sensitivity, artifacts and noise are indicators of image quality.
A high image contrast provides the discrimination between tissues of different densities. The image resolution states the distinct visibility of linear structures, masses and calcifications. Noise and artifacts degrade the image quality. In computed tomography (CT), high spatial resolution improves the visibility of small details, but results in increased noise. Increased noise reduces the low contrast detectability. Noise can be reduced by the use of large voxels, increased radiation dose, or an additional smoothing filter, but this type of filter increases blurring. An image acquisition technique taking these facts into account maximizes the received information content and minimizes the radiation risk or keeps it at a low level. See also As Low As Reasonably Achievable. Further Reading: Basics:
News & More:
Result Pages : |