'ROM' p3 Searchterm 'ROM' found in 9 terms [ • ] and 182 definitions [• ]Result Pages : •
The x-ray (or roentgen-ray) spectrum consists of electromagnetic radiation with wavelengths shorter than ultraviolet (UV) and longer than gamma rays. The usual photon energies of x-rays range from 100 electron volt (eV) to 100 keV (wavelengths of around 10 to 0.01 nanometers; or around 100 to 0.1 Angstroms); corresponding to frequencies in the range of 30 PHz to 30 EHz (see Hertz). The energy distribution (wavelength, frequency) of x-ray photons emerges from the source, the x-ray tube. In a conventional tube, x-rays are generated in two different ways that, together, form a typical spectrum consisting of the bremsstrahlung, which is superimposed by the lines of the characteristic spectrum (in a graph, the curve is shaped like a hump topped by several spikes). See also Angstrom, Direct Radiation, Secondary Radiation, and Radiation Meter. • View NEWS results for 'X-Ray Spectrum' (2). Further Reading: Basics: News & More:
•
(CT or CAT scan) Computed tomography is a diagnostic imaging technique, previously also known as computerized axial tomography (CAT), computer-assisted tomography (CAT), computerized tomographic imaging, and reconstructive tomography (RT). A CT scan is based on the measurement of the amount of energy that a tissue absorbs as a beam of radiation passes through it from a source to a detector. As the patient table moves through the CT scanner, the CT tube rotates within the circular opening and the set of x-ray detectors rotate in synchrony. The narrow, fan-shaped x-ray beam has widths ranging from 1 to 20 mm. The large number of accurate measurements with precisely controlled geometry is transformed by mathematical procedures to image data. Corresponding to CT slices of a certain thickness, a series of two-dimensional cross-sectional images is created. A CT is acquired in the axial plane, while coronal and sagittal images can be rendered by computer reconstruction. Although a conventional radiography provides higher resolution for bone x-rays, CT can generate much more detailed images of the soft tissues. Contrast agents are often used for enhanced delineation of anatomy and allow additional 3D reconstructions of arteries and veins. CT scans use a relatively high amount of ionizing radiation compared to conventional x-ray imaging procedures. Due to widespread use of CT imaging in medicine, the exposure to radiation from CT scans is an important issue. To put this into perspective, the FDA considers the risk of absorbed x-rays from CT scans to be very small. Even so, the FDA recommends avoiding unnecessary exposure to radiation during diagnostic imaging procedures, especially for children. CT is also used in other than medical fields, such as nondestructive testing of materials including rock, bone, ceramic, metal and soft tissue. See also Contrast Enhanced Computed Tomography. Further Reading: News & More:
•
Different stages of the drug development and approval process in the USA, lead from preclinical trials (testing in animals), first application in humans through limited and broad clinical tests, to postmarketing studies.
By Dale E. Wierenga, Ph.D. and C. Robert Eaton Office of Research and Development Pharmaceutical Manufacturers Association 'In reviewing this report, it is important to keep in mind the realities of the drug discovery and development process. The U.S. system of new drug approvals is perhaps the most rigorous in the world. On average, it costs a company $359 million to get one new medicine from the laboratory to the pharmacist's shelf, according to a February 1993 report by the Congressional Office of Technology Assessment.' See also Phase 1 2 3 4 Drug Trials, Clinical Trial, Food and Drug Administration, and European Medicines Agency. •
(FT) The Fourier transformation is a mathematical procedure to separate out the frequency components of a signal from its amplitudes as a function of time, or the inverse Fourier transformation (IFT) calculates the time domain from the frequency domain. Fourier transformation analysis allows spatial information to be reconstructed from the raw data.
•
Radiation can ionize matter caused by the high energy which displaces electrons during interactions with atoms. In the electromagnetic spectrum higher frequency ultraviolet radiation begins to have enough energy to ionize matter. Examples of ionizing radiation include alpha particles, beta particles, gamma rays, x-rays, neutrons, high-speed electrons, high-speed protons, and other particles capable of producing ions by direct or secondary processes in passage through tissues. Damage of living tissue results from the transfer of energy to atoms and molecules in the cellular structure. Ionized cells have to repair themselves to remain alive. Generally, healthy cells have a higher capability to repair themselves than cancer cells. Biological effects of ionizing radiation exposure:
•
Generation of free radicals;
•
break down of chemical bonds;
•
production of new chemical bonds and cross-linkage between macromolecules;
•
deregulation of vital cell processes by molecule damage (e.g. DNA, RNA, proteins).
Ionizing radiation are used in a wide range of facilities, including health care, research institutions, nuclear reactors and their support facilities, and other manufacturing settings. These radiation sources can pose a serious hazard to affected people and environment if not properly controlled. See also Radiation Safety, Controlled Area, Radiotoxicity and As Low As Reasonably Achievable. Further Reading: Basics:
News & More:
Result Pages : |