Radiology - Technology Information Portal
Thursday, 21 November 2024
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'Ion Beam' p2
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'Ion Beam' found in 1 term [
] and 5 definitions [
], (+ 16 Boolean[
] results
Result Pages :
Radiation Shielding
Radiation shielding is the process of limiting the penetration of radiation into the environment, by blocking with a barrier made of impermeable material. This protective barrier is usually formed of a material with high density, for example lead that absorbs the radiation.
Radiation sources are self-shielded with absorbing material incorporated into the equipment, adjacent to the source to reduce stray radiation to the surrounding area below dose limits.
Rooms with x-ray or other radiation equipment are additionally shielded with lead-lined walls to reduce the radiation exposure to humans within the facility. The amount of shielding required to protect against different kinds of radiation depends on how much energy they have. The shielding calculations are based on the half value layer of the primary radiation beam. Sufficient half value layers of shielding are calculated to reduce the radiation exposure outside the room to reasonable levels.
Personal shielding requirements depending on the type of radiation:
Alpha rays are shielded by a thin piece of paper, or even the outer layer of human skin. Unlike skin, living tissue inside the body, offers no protection against inhaled or ingested alpha radiation.
Beta particles, depending on their energy can penetrate the skin. Shielding and covering, for example with heavy clothing, is necessary to be personally protected against beta-emitters.
Gamma rays and x-rays penetrate the body and other matter. Dense shielding material, such as lead, is necessary for protection. The higher the radiation energy, the thicker the lead must be. Lead aprons protect parts of the body against stray radiation.

See also Radiation Safety.
Bucky Factor
(B) The Bucky factor is the ratio of x-rays arriving at the grid (incident radiation), and those being transmitted through the grid. The Bucky factor describes how much the output of the x-ray tube must be increased in order to compensate for the removal of incident radiation by a grid.
B = incident radiation / transmitted radiation
For example, if for every two x-rays impinging the grid, only one will pass through, then the grid has a Bucky factor of two and the intensity of the x-ray beam must be doubled.
Computed Tomography
(CT or CAT scan) Computed tomography is a diagnostic imaging technique, previously also known as computerized axial tomography (CAT), computer-assisted tomography (CAT), computerized tomographic imaging, and reconstructive tomography (RT).
A CT scan is based on the measurement of the amount of energy that a tissue absorbs as a beam of radiation passes through it from a source to a detector. As the patient table moves through the CT scanner, the CT tube rotates within the circular opening and the set of x-ray detectors rotate in synchrony. The narrow, fan-shaped x-ray beam has widths ranging from 1 to 20 mm. The large number of accurate measurements with precisely controlled geometry is transformed by mathematical procedures to image data. Corresponding to CT slices of a certain thickness, a series of two-dimensional cross-sectional images is created.
A CT is acquired in the axial plane, while coronal and sagittal images can be rendered by computer reconstruction. Although a conventional radiography provides higher resolution for bone x-rays, CT can generate much more detailed images of the soft tissues. Contrast agents are often used for enhanced delineation of anatomy and allow additional 3D reconstructions of arteries and veins.
CT scans use a relatively high amount of ionizing radiation compared to conventional x-ray imaging procedures. Due to widespread use of CT imaging in medicine, the exposure to radiation from CT scans is an important issue. To put this into perspective, the FDA considers the risk of absorbed x-rays from CT scans to be very small. Even so, the FDA recommends avoiding unnecessary exposure to radiation during diagnostic imaging procedures, especially for children.
CT is also used in other than medical fields, such as nondestructive testing of materials including rock, bone, ceramic, metal and soft tissue.

See also Contrast Enhanced Computed Tomography.
Neutron Activation Analysis
(NAA) Neutron activation analysis is a very sensitive analytical technique to determine even very low concentration of chemical elements, trace elements for example, in small biological samples.
NAA becomes commercial available in the USA in 1960.
In the activation process stable nuclides in the sample, which is placed in a neutron beam (neutron flux, 90-95% are thermal neutron with low energy levels under 0.5 eV), will change to radioactive nuclides through neutron capture (artificial radioactivity). These radioactive nuclides decay by emitting alpha-, beta-particles and gamma-rays with a unique half-life. Qualitative and quantitative analysis of the sample is done with a high-resolution gamma-ray spectrometer.
NAA is subdivided into the following techniques:
Fast NAA (FNAA): about 5% of the total flux consists of fast neutrons (energy above 0.5 MeV). As a consequence the radiation contains more nuclear particles.
Prompt Gamma NAA (PGNAA): gamma rays are measured during neutron activation. For detection of elements with a rapid decay.
Delayed Gamma NAA (DGNAA): conventional detection after the neutron activation.
Epithermal NAA (ENAA): ~ 2% of the total neutron flux with an energy level between 0.5 eV and 0.5 MeV are detected inside a cadmium or boron shield.
Instrumental NAA (INAA): automated from sample handling to data processing. Analyzes simultaneously more than thirty elements in most samples without chemical processing.
Radiochemical NAA (RNAA): After neutron activation the sample is chemically refined for better analysis.
Pitch
(p) The pitch (in computed tomography) is the ratio of the patient table increment to the total nominal beam width for the CT scan. The pitch factor relates the volume coverage speed to the thinnest sections that can be reconstructed. In spiral CT, dose is always inversely proportional to pitch.
Among the different manufacturers, there are various definitions of pitch depending on whether a single-detector (single-slice) or multi-detector (multi-slice) CT scanner is used.
For a single-slice helical scanner the pitch is:
Pitch = table movement per rotation/slice collimation.
The international standard formula (by the IEC) is:
Pitch = TF (table feed in mm per 360° rotation)/(N (number of detector rows) x SC (slice collimation in mm))
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]