'Image' p12 Searchterm 'Image' found in 4 terms [ • ] and 115 definitions [• ]Result Pages : • X-rays are a part of the electromagnetic spectrum. X-rays and gamma rays are differentiated on the origin of the radiation, not on the wavelength, frequency, or the energy. X-rays are emitted by electrons outside the nucleus, while gamma rays are emitted by the nucleus. X-rays have wavelengths in the range of about 1 nanometer (nm) to 10 picometer (pm), frequencies in the range of 10-16 to 10-20 Hertz (Hz) and photon energies between 0.12 and 120 kilo electron Volt (keV). The energy of rays increase with decreased wavelengths. X-rays with energies between 10 keV and a few hundred keV are considered hard X-rays. The cutoff between soft or hard X-rays is around a wavelength of 100 pm. Because of their short wavelength, X-rays interact little with matter and pass through a wide range of materials. These interactions occur as absorption or scattering;; primary are the photoelectric effect, Compton scattering and, for ultrahigh photon energies of above 1.022 mega electron Volt (MeV), pair production. X-rays are produced when high energy electrons struck a metal target. The kinetic energy of the electrons is transformed into electromagnetic energy when the electrons are abruptly decelerated (also called bremsstrahlung radiation, or braking radiation) similar to the deceleration of the circulating electron beam in a synchrotron particle accelerator. Another type of rays is produced by the inner, more tightly bound electrons in atoms;; frequently occurring in decay of radionuclides (characteristic radiation, gamma ray, beta ray). The energy of an X-ray is equivalent to the difference in energy of the initial and final atomic state minus the binding energy of the electron. Wilhelm Conrad Roentgen discovered this type of rays (also called Roentgen-rays) in 1895 and realized that X-rays penetrate soft tissue but are absorbed by bones, which provides the possibility to image anatomic structures; the first type of diagnostic imaging was established. Radiographic images are based on this difference in attenuation for tissue and organs of different density. Today ionizing radiation is widely used in medicine in the field of radiology. See also Exposure Factors, X-Ray Tube, and X-Ray Spectrum. Further Reading: Basics:
News & More:
•
The x-ray absorption is the uptake of energy or the decrease of the number of photons by the tissue or matter through which the radiation travels. Absorption in nuclear reactions and particulate radiation is a process of taking up kinetic energy of particles or the combination of particles with an atom, a nucleus, or another particle. Absorption characteristics of imaged tissues are represented by their linear attenuation coefficients. See also Absorber. Further Reading: Basics:
News & More:
•
The active zone on an image is the zone available for processing. When a zone is activated, its border has sizing handles.
•
An algorithm is a computer compatible equation. Computed tomographic algorithms reconstruct a function from its projections. A very large number of measurements are processed with complex mathematical operations to compute cross-sectional images.
• Result Pages : |