Radiology - Technology Information Portal
Saturday, 23 November 2024
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'HIS' p13
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'HIS' found in 1 term [
] and 85 definitions [
]
Result Pages :
Internal Conversion
In the internal conversion process the multipole electric field of the nucleus of an atom, in an electromagnetically excited state, react with an orbit electron. With enough energy the electron is ejected (internal conversion electron). The energy of the conversion electron depends on the energy transferred from the nucleus reduced by the shell specific binding energy. This process competes with gamma emission. The refilling for the vacancy left by the internal conversion electron occurs through the Auger effect, a higher orbit electron take place and x-ray or an Auger electron will be emitted.
The atomic number of the atom gets not changed by internal conversion.

See also Conversion Electron, Auger Effect and Auger Electron.
Ion Beam
Ion particles accelerated in a cyclotron are diverted by a magnetic field to a circular course until a desired energy is reached. The ion beam resulting from this procedure is e.g. used for the production of radionuclides.

See also Ion, Cyclotron.
Isomeric Transition
If a nucleus still has excess energy after attempts of stabilization, it can emit energy without changing the number of protons or neutrons. This process is named isomeric transition. One way of isomeric transition is the emission of a gamma rays, the other competing way is internal conversion, where the excess energy of the nucleus must exceed the binding energy of an electron, which then will be ejected from the atom.

See also Decay, Gamma Radiation and Internal Conversion.
Lead Apron
A lead apron is a shield of lead and rubber, used to protect patients and staff. This apron protects the reproductive and other vital body organs against high exposure of ionizing radiation.
Magnification
Usually, magnification is the enlargement of an area by interpolation after the reconstruction of an image. Magnification does not provide more information, but allows a better view of certain object details. A zoom reconstruction is based on the raw data of the scan. Magnification software enlarges an image by mapping one pixel onto an n x n array of screen pixels (pixel stretching).
Other types of magnification include electron-optical, geometric, the product of geometric and the electron-optical magnification and enlargement by imaging procedures.
Electron-optical magnification is the ratio of the dimension of the detector input image and the size of the image on the screen. This ratio is determined by all electronic and optical imaging processes of the image chain, provided that one camera pixel is mapped onto accurately one monitor pixel.
Geometric magnification occurs in x-ray images when the focal spot is theoretically assumed to be a point and not an area. For nanofocus and microfocus radiographic systems, the focus-to-detector (film) distance and the focus-to-object (film) distance defines the geometric magnification.
The total magnification is the product of the electron-optical and geometric magnification. Possible magnifications are up to a factor of 26,000.
Magnification procedures in medical imaging are usually produced by extended distance between the subject and the image receptor.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]