'Focal Spot' Searchterm 'Focal Spot' found in 1 term [ • ] and 8 definitions [• ]Result Pages : • Focal Spot
The focal spot is the point where the electron beam impinges on the tube anode and from which x-rays are emitted. The size of the focal spot is determined by the size of the filament and cathode, which is determined by the manufacturer. Most x-ray tubes have more than one focal spot size. The size of the focal spot has influence on spatial resolution. The smaller the focal spot, the better the limiting spatial resolution of the x-ray system, especially in magnification mammography. The use of a small focal spot concentrates heat onto a smaller portion of the anode therefore, more heat is generated and a longer cooling time is necessary. •
Filter grids are used to reduce scattered noise and increase contrast in x-ray images. Primary radiation passing through an object gets scattered caused by the various density of different materials. Scatter radiation produces noise (radiographic fog) on the film or detector, which degrades the diagnostic quality. Anti-scatter grids act as filters between patient and film (or receiver) to remove scatter radiation. The use of a grid is recommended with body parts thicker than 10 cm and kVp values about 60 kV. X-ray filter grids are available with focused or parallel strips. These two types are produced with linear or crossed grid configurations. The septa of filter grids consist of high radiation absorbing materials (e.g. lead) separated by permeable parts. During radiation exposure, movement of the grid blurs a projection of the septa. If the image receptor and x-ray tube (with the focal spot) are in a fixed position relative to one another the grid is automatically aligned. In mobile radiography, the position of the focal spot and the image receptor is variable. Additionally cassettes incorporating anti-scatter grids are also available. •
The anode is the positive terminal of an x-ray tube, usually consisting of a tungsten block embedded in a copper stem. Electrons flow from the cathode toward the anode and the anode emits x-rays from the focal spot.
•
Conventional (also called analog, plain-film or projectional) radiography is a fundamental diagnostic imaging tool in the detection and diagnosis of diseases. X-rays reveal differences in tissue structures using attenuation or absorption of x-ray photons by materials with high density (like calcium-rich bones). Basically, a projection or conventional radiograph shows differences between bones, air and sometimes fat, which makes it particularly useful to asses bone conditions and chest pathologies. Low natural contrast between adjacent structures of similar radiographic density requires the use of contrast media to enhance the contrast. In conventional radiography, the patient is placed between an x-ray tube and a film or detector, sensitive for x-rays. The choice of film and intensifying screen (which indirectly exposes the film) influence the contrast resolution and spatial resolution. Chemicals are needed to process the film and are often the source of errors and retakes. The result is a fixed image that is difficult to manipulate after radiation exposure. The images may be also visualized on fluoroscopic screens, movies or computer monitors. X-rays emerge as a diverging conical beam from the focal spot of the x-ray tube. For this reason, the radiographic projection produces a variable degree of distortion. This effect decreases with increased source to object distance relative to the object to film distance, and by using a collimator, which let through parallel x-rays only. Conventional radiography has the disadvantage of a lower contrast resolution. Compared with computed tomography (CT) and magnetic resonance imaging (MRI), it has the advantage of a higher spatial resolution, is inexpensive, easy to use, and widely available. Conventional radiography can give high quality results if the technique selected is proper and adequate. X-ray systems and radioactive isotopes such as Iridium-192 and Cobalt-60 for generating penetrating radiation, are also used in non-destructive testing. See also Computed Radiography and Digital Radiography. Further Reading: Basics:
News & More:
•
The highest amount of detail that can be shown in an image. Defined by the size of the smallest object that can be conveniently viewed, which for nanofocus and microfocus x-ray tubes is about half the size of the focal spot. Result Pages : |