Radiology - Technology Information Portal
Thursday, 30 January 2025
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'Electron' p12
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'Electron' found in 14 terms [
] and 63 definitions [
]
Result Pages :
Fluoroscopy
Fluoroscopy is used to study moving body structures in real time. A fluoroscope is used to produce a continuous (advanced fluoroscopy machines provide pulsed techniques to lower the amount of radiation) x-ray beam, passing through the body part being examined and transmitted to a monitor so that dynamic images of deep tissue structures can be visualized. Fluoroscopy is primarily used for gastrointestinal exams, genitourinary studies, cardiovascular imaging and for invasive procedures performed by interventional radiologists and angiographers under fluoroscopic guidance. Fluoroscopy can also produce a static record of an image formed on the output phosphor of an image intensifier. The image intensifier is an x-ray image receptor that increases the brightness of a fluoroscopic image by electronic amplification and image minification. Modern fluoroscopy systems combine less radiation with better image quality due to digital image processing and flat-panel technology.
Roentgen's discovery of x-rays related directly to fluoroscopy, because fluorescence on the material in the room draws his attention to the x-ray's properties. In 1896, Thomas A. Edison created the first fluoroscope, consisting of a zinc-cadmium sulfide screen that was placed above the patient's body in the x-ray beam and provides a faint fluorescent image. In first-generation units, the exam room required complete darkness. The users wear red goggles for up to 30 minutes prior to the examination, to adapt the eyes to darkness. After this, the radiologist stared directly at a yellow-green fluorescent image through a sheet of lead to prevent the x-ray beam from striking the eyes.
• 
View NEWS results for 'Fluoroscopy' (3).Open this link in a new window.
Focal Spot
The focal spot is the point where the electron beam impinges on the tube anode and from which x-rays are emitted. The size of the focal spot is determined by the size of the filament and cathode, which is determined by the manufacturer.
Most x-ray tubes have more than one focal spot size. The size of the focal spot has influence on spatial resolution. The smaller the focal spot, the better the limiting spatial resolution of the x-ray system, especially in magnification mammography. The use of a small focal spot concentrates heat onto a smaller portion of the anode therefore, more heat is generated and a longer cooling time is necessary.
Food and Drug Administration
https://www.fda.gov/default.htm (FDA) An agency of the US federal government established by Congress in 1912 and presently part of the US Department of Health and Human Services. The FDA gives classifications of medical devices according to potential risks and controls the safety of marketed drugs.
For more details please visit the FDA's 'Our Mission and Mandate'.

See also Class I II III Devices and Phase 1 2 3 4 Drug Trials.
Contact Information
MAIL
Food and Drug Administration
5600 Fishers Lane
Rockville, Maryland 20857
USA
PHONE
+1-888-463-6332 (see also under E-MAIL)
FAX
please visit the FDA FAX Directory
E-MAIL
ONLINE
Free Radicals
Free radicals are highly reactive molecules or ions containing unpaired electrons. Free radicals are likely to take part in chemical reactions.
Gamma Ray
Gamma rays are a form of nuclear radiation that consists of photons emitted by radioactive elements from the nucleus. This high energetic light emission is also produced from subatomic particle interaction, such as electron positron annihilation. Gamma radiation, similar to x-radiation can injure and destroy tissue, especially cell nuclei.
Gamma rays have in general very high frequencies, short wavelengths, are electrically neutral and penetrate matter. The interaction of gamma rays with matter depends on the nature of the absorber as well as the energy of the gamma rays; these interactions determine also the type and amount of shielding needed for radiation protection.

See also Radiation Safety, Lead Equivalence, Lead Apron, Leaded Glove, Glove-Box, Radioactive Decay Law and Radiation Worker.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]