'Computed Tomography' p6 Searchterm 'Computed Tomography' found in 4 terms [ • ] and 61 definitions [• ]Result Pages : • (CA) Contrast agents are used to change the imaging characteristics, resulting in additional information about anatomy, morphology or physiology of the human body. Radiocontrast agents (also called photon-based imaging agents) are used to improve the visibility of internal body structures in x-ray and CT procedures. Contrast agents are also used to increase the contrast between different tissues in MRI (magnetic resonance imaging) and ultrasound imaging. The ideal imaging agent provides enhanced contrast with little biological interaction. First investigations with radiopaque materials are done shortly after the discovery of x-rays. These positive contrast agents attenuate x-rays more than body soft tissues due to their high atomic weight. Iodine and barium have been identified as suitable materials with high radiodensity and are used until today in x-ray and CT contrast agents. Iodine-based contrast agents are water-soluble and the solutions are used nearly anywhere in the body. Iodinated contrast materials are most administered intravenous, but can also be introduced intraarterial, intrathecal, oral, rectal, intravesical, or installed in body cavities. Barium sulfate is only used for opacification of the gastrointestinal tract. Negative contrast agents attenuate x-rays less than body soft tissues, for example gas. Iodinated contrast media are differentiated in;
•
•
ionic monomer (high-osmolar contrast media);
•
nonionic dimer (low- or iso-osmolar contrast media);
Intravascular iodinated contrast agents are required for a large number of x-ray and CT studies to enhance vessels and organs dependent on the blood supply. Injectable contrast agents are diluted in the bloodstream and rapidly distributed throughout the extracellular fluid. The main route of excretion is through the kidneys, related to the poor binding of the agent to serum albumin. The liver (gall bladder) and small intestine provide alternate routes of elimination particularly in patients with severe renal impairment. The use of special biliary contrast agents is suitable for gallbladder CT and cholecystograms because they are concentrated by the liver to be detectable in the hepatic bile. The introduction of fast multi-detector row CT technology, has led to the development of optimized contrast injection techniques. The amount of contrast enhancement depends on the contrast agent characteristics, such as iodine concentration, osmolality, viscosity, and the injection protocol, such as iodine flux and iodine dose. Adverse reactions are rare and have decreased with the introduction of nonionic contrast agents. See also Contrast Enhanced Computed Tomography, Abdomen CT, Contrast Media Injector, Single-Head CT Power Injector, Multi-Head Contrast Media Injector, Syringeless CT Power Injector, CT Power Injector. • View NEWS results for 'Contrast Agents' (4). Further Reading: News & More:
•
Conventional (also called analog, plain-film or projectional) radiography is a fundamental diagnostic imaging tool in the detection and diagnosis of diseases. X-rays reveal differences in tissue structures using attenuation or absorption of x-ray photons by materials with high density (like calcium-rich bones). Basically, a projection or conventional radiograph shows differences between bones, air and sometimes fat, which makes it particularly useful to asses bone conditions and chest pathologies. Low natural contrast between adjacent structures of similar radiographic density requires the use of contrast media to enhance the contrast. In conventional radiography, the patient is placed between an x-ray tube and a film or detector, sensitive for x-rays. The choice of film and intensifying screen (which indirectly exposes the film) influence the contrast resolution and spatial resolution. Chemicals are needed to process the film and are often the source of errors and retakes. The result is a fixed image that is difficult to manipulate after radiation exposure. The images may be also visualized on fluoroscopic screens, movies or computer monitors. X-rays emerge as a diverging conical beam from the focal spot of the x-ray tube. For this reason, the radiographic projection produces a variable degree of distortion. This effect decreases with increased source to object distance relative to the object to film distance, and by using a collimator, which let through parallel x-rays only. Conventional radiography has the disadvantage of a lower contrast resolution. Compared with computed tomography (CT) and magnetic resonance imaging (MRI), it has the advantage of a higher spatial resolution, is inexpensive, easy to use, and widely available. Conventional radiography can give high quality results if the technique selected is proper and adequate. X-ray systems and radioactive isotopes such as Iridium-192 and Cobalt-60 for generating penetrating radiation, are also used in non-destructive testing. See also Computed Radiography and Digital Radiography. Further Reading: Basics:
News & More:
•
A convolution filter is a mathematical filter function (also called kernel). During image reconstruction of computed tomography scans, various types of convolution filters e.g., to smooth or to enhance edges, can be selected according to the tissue characteristics. See also Raw Data. •
(CCTA) Coronary computed tomography angiography is a diagnostic imaging procedure to visualize the coronary arteries. CCTA is a non-invasive angiogram that allows the assessment of narrowed and clogged arteries that can cause heart attack and stroke. Coronary CTA is a non-invasive alternative to traditional angiography that offers detailed images of heart function, resulting in faster, more accurate diagnosis. It helps stratify cardiac risk in patients with low to intermediate likelihood of coronary artery disease. For some patients with chest pain, coronary CTA can rule out the need for cardiac catheterization. Coronary imaging requires a very fast CT scan, because the coronary arteries and other cardiac structures move rapidly during the cardiac cycle. The current 'state of the art' 64 slice multi-detector row CT systems rotate around the patient in less than 500 ms. The data must be acquired monitored by an electrocardiogram, which allows the computer to reconstruct retrospectively slices at different small segments of the cardiac cycle. This cardiac synchronization reduces motion artifacts in the coronary arteries and provides movies of the beating heart and valve motion. See also Coronary Angiogram, Calcium Score, Cardiac Phase, Cine Mode and Defibrillator. •
The dose limit is the highest value of an applied or allowed radiation exposure. The radiation dose is limited in order to prevent the occurrence of radiation-induced deterministic effects or to limit the probability of radiation-related stochastic effects to an acceptable level. See also Whole Body Counter, Thermoluminescent Dosimeter, Dosimetrist, Annual Limit On Intake, Committed Effective Dose Equivalent, Computed Tomography Dose Index, Directional Dose Equivalent, Doubling Dose. Further Reading: News & More:
Result Pages : |