Radiology - Technology Information Portal
Saturday, 23 November 2024
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'Clinical Trial' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'Clinical Trial' found in 1 term [
] and 2 definitions [
], (+ 1 Boolean[
] results
Result Pages :
Clinical Trial
A clinical trial is a controlled study involving human subjects, designed to evaluate prospectively the safety and effectiveness of new drugs or devices or of behavioral interventions.

See also Adverse Reaction and Safety of Contrast Agents.
• 
View NEWS results for 'Clinical Trial' (5).Open this link in a new window.
Drug Development and Approval Process (USA)
Different stages of the drug development and approval process in the USA, lead from preclinical trials (testing in animals), first application in humans through limited and broad clinical tests, to postmarketing studies.

Years Test Population Purpose Success Rate
Preclinical Testing 3.5 Laboratory and animal studies Assess safety and biological activity 5,000 compounds evaluated
File IND at FDA
Phase I 1 20 to 80 healthy volunteers Determine safety and dosage 5 enter trials
Phase II 2 100 to 300 patient volunteers Evaluate effectiveness, look for side effects
Phase III 3 1000 to 3000 patient volunteers Verify effectiveness, monitor adverse reactions from long-term use
File NDA at FDA
FDA 2.5 Review process / Approval 1 approved
12 Total
Phase IV Additional Post marketing testing required by FDA

By Dale E. Wierenga, Ph.D. and C. Robert Eaton
Office of Research and Development
Pharmaceutical Manufacturers Association

'In reviewing this report, it is important to keep in mind the realities of the drug discovery and development process. The U.S. system of new drug approvals is perhaps the most rigorous in the world. On average, it costs a company $359 million to get one new medicine from the laboratory to the pharmacist's shelf, according to a February 1993 report by the Congressional Office of Technology Assessment.'

See also Phase 1 2 3 4 Drug Trials, Clinical Trial, Food and Drug Administration, and European Medicines Agency.
Phase 1, 2, 3, 4 Drug Trials
Different stages of testing drugs in humans, from first application in humans through limited and broad clinical tests, to postmarketing studies. Preclinical trials are the testing in animals.
Phase I: Safety, pharmacokinetics
Phase II: Dose
Phase III: Efficacy
Phase IV: Postmarketing
Diagnostic Imaging
Imaging refers to the visual representation of an object. Today, diagnostic imaging uses radiology and other techniques, mostly noninvasive, to create pictures of the human body. Diagnostic radiography studies the anatomy and physiology to diagnose an array of medical conditions. The history of medical diagnostic imaging is in many ways the history of radiology. Many imaging techniques also have scientific and industrial applications. Diagnostic imaging in its widest sense is part of biological science and may include medical photography, microscopy and techniques which are not primarily designed to produce images (e.g., electroencephalography and magnetoencephalography).
Brief overview about important developments:
Imaging used for medical purposes, began after the discovery of x-rays by Konrad Roentgen 1896. The first fifty years of radiological imaging, pictures have been created by focusing x-rays on the examined body part and direct depiction onto a single piece of film inside a special cassette.
In the 1950s, first nuclear medicine studies showed the up-take of very low-level radioactive chemicals in organs, using special gamma cameras. This diagnostic imaging technology allows information of biologic processes in vivo. Today, single photon emission computed tomography (SPECT) and positron emission tomography (PET) play an important role in both clinical research and diagnosis of biochemical and physiologic processes.
In the 1960s, the principals of sonar were applied to diagnostic imaging. Ultrasound has been imported into practically every area of medicine as an important diagnostic tool, and there are great opportunities for its further development. Looking into the future, the grand challenges include targeted contrast imaging, real-time 3D or 4D ultrasound, and molecular imaging. The earliest use of ultrasound contrast agents (USCA) was in 1968.
The introduction of computed tomography (CT/CAT) in the 1970s revolutionized medical imaging with cross sectional images of the human body and high contrast between different types of soft tissues. These developments were made possible by analog to digital converters and computers. First, spiral CT (also called helical), then multislice CT (or multi-detector row CT) technology expanded the clinical applications dramatically.
The first magnetic resonance imaging (MRI) devices were tested on clinical patients in 1980. With technological improvements including higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI is a real-time interactive imaging modality that provides both detailed structural and functional information of the body.

Today, imaging in medicine has been developed to a stage that was inconceivable a century ago, with growing modalities:
x-ray projection imaging, including conventional radiography and digital radiography;
scintigraphy;
single photon emission computed tomography;
positron emission tomography.

All these types of scans are an integral part of modern healthcare. Usually, a radiologist interprets the images. Most clinical studies are acquired by a radiographer or radiologic technologist. In filmless, digital radiology departments all images are acquired and stored on computers. Because of the rapid development of digital imaging modalities, the increasing need for an efficient management leads to the widening of radiology information systems (RIS) and archival of images in digital form in a picture archiving and communication system (PACS). In telemedicine, medical images of MRI scans, x-ray examinations, CT scans and ultrasound pictures are transmitted in real time.

See also Interventional Radiology, Image Quality and CT Scanner.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]